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1. Introduction

The inference of metrical structure is one of the most fundamental

challenges in phonological theory, as it involves inducing hidden

structure which is not directly recoverable from the speech signal. Most

work in generative phonology assumes that the induction of such covert

structure is driven and constrained by a Universal Grammar (Tesar and

Smolensky 2000). Optimality Theory (OT, Prince and Smolensky 1993),

at least in its standard form, considers that learners are endowed with
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comments and suggestions from three anonymous reviewers. All remaining

errors and infelicities are solely mine. This work was supported by the
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a rich set of innate symbolic constraints (see Soderstrom, Mathis and

Smolensky 2006) and that the task of the learner is to find a particular

constraint ranking that is consistent with the ambient language. Yet, a

growing body of research in computational language learning has

questioned the need for such a priori knowledge. The pioneering work

of the Parallel Distributed Processing group (McClealland and Rumerhart

1986a,b) initiated a fruitful research program, which seeks to model (and

ultimately explain) high-level cognition in terms of neurally-inspired

architectures1). The framework of Harmonic Grammar (Smolensky and

Legendre 2006, vol 1: 207-234) envisions grammar as a set of

numerically weighted constraints and is an heir to this research

tradition. Its properties are currently being actively investigated (see for

example Pater 2009; Potts et al. 2010). From a different perspective,

Alderete et al. (2013) showed how a simple connectionist architecture

based on a multi-layer perceptron was able to capture constraints on

homorganic place restrictions in Arabic roots, suggesting that such

constraints need not be available before language acquisition begins. In

parallel, Hayes and Wilson (2008), building on previous work by

Goldwater and Johnson (2003), have developed a model inspired by

principles grounded in information theory, which aims to infer a

phonotactic grammar solely on the basis of positive evidence.

This paper is a contribution to this broad research paradigm. It

provides a connectionist analysis of the suprasegmental structure of a

variety of French spoken in southern France. The framework which is

adopted, namely Dynamic Computational Networks (DCN’s), is a

connectionist model developed by John Goldsmith and Gary Larson in a

series of works (Goldsmith 1992, 1993, 1994; Goldsmith and Larson 1990,

1993; Larson 1990, 1993). I show that this type of architecture is able to

model the suprasegmental structure of this variety of French and that it

is superior to an approach to syllabicity solely based on a traditional

sonority scale. Furthermore, I develop an analysis of the neutral vowel

schwa ([ə]) in this variety and propose that its behaviour stems from
its inability to project from the syllabic to the metrical level. This

analysis is based on a large corpus drawn from an authentic sample of

1) See Bechtel and Abrahamsen (2002) for a recent overview of connectionism.
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spoken French. Such a corpus-based approach to phonology has two

important characteristics: first, it allows us to precisely quantify the

predictions of the model, beyond what would be possible by simply

examining a few hand-picked examples. Secondly, it enables us to

evaluate how much information can be induced from data, which in turn

provides insights about how much (or how little) knowledge must be

available before learning takes place.

The rest of the paper is organized as follows: the next section

provides some background about southern French; Section 3 introduces

Dynamic Computational Networks and presents the adjustments that

were made to the model; Section 4 discusses the simulations that were

run and the results that were obtained, and the last section concludes

and discusses a number of issues for future research.

2. Southern French

While it is not possible to treat ‘southern French’ as a homogenous

linguistic system, a number of characteristics have been documented

which are shared by most varieties (Armstrong and Unsworth 1999;

Durand 1976, 1995; Durand, Slater and Wise 1987; Watbled 1995 inter

alia). Traditional southern varieties of French have a phonemic schwa

which contrasts with zero in word-final position (see 1), an opposition

which is no longer found in other varieties, where the pairs in (1) are

homophonous.

(1) Minimal pairs involving word-final schwa in southern French

net [nɛt] ‘neat (masc.)’

nette [nɛtə] ‘neat (fem.)’

Paul [pɔl] proper name

pôle [pɔlə] ‘pole’

appel [apɛl] ‘call (noun)’

appelle [apɛlə] ‘call (verb)’

golf [ɡɔlf] ‘golf’

golfe [ɡɔlfə] ‘gulf’
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Early generative analyses of standard French posited an abstract final

schwa similar to that found in southern French (Dell 1980; Schane 1968;

Selkirk 1978), a view that has found some support until recently

(Montreuil 2002). However, Tranel (1981) developed a number of

arguments showing that such an approach raised more problems than it

solved. Crucially, the arguments in support of such abstract schwas

were mostly theory-internal and were not bound empirically. However,

even though this type of analysis has been abandoned for northern

French, the issue remains relevant in the context of southern French,

where the vowel is a genuine segment.

The behaviour of schwa in southern French is tightly bound to that

of mid vowels. The contrast which is found in northern French among

the mid vowels /e, ɛ, ø, œ, o, ɔ/ (see for instance Walker, 2001) does
not exist in southern French. Pairs such as épée ‘sword’ ～ épais ‘thick’,
jeûne ‘fasting’ ～ jeune ‘young’, beauté ‘beauty’ ～ botté ‘kicked’, which
are minimal in northern hexagonal French, are homophonous in southern

French and are realized [e.ˈpe], [ˈʒœ.nə] and [bo.ˈte], respectively. The
distribution of mid (oral) vowels is governed by the loi de position,

which can be stated as follows:

(2) The loi de position: a mid vowel is

a. close in an open syllable

b. open in a closed syllable or in an open syllable followed by a

schwa-headed syllable

(after Rizzolo, 2002, p. 11, translation mine)

Examples in (3) illustrate this pattern in word-final position in open

syllables (3a), closed syllables (3b), and open syllables followed by

schwa (3c), respectively.

(3) a. panacée [pa.na.ˈse] ‘panacea’

paresseux [pa.re.ˈsø] ‘lazy (masc.)’

haricot [a.ri.ˈko] ‘bean’

b. carrousel [ka.ru.ˈzɛl] ‘carousel’

épagneul [e.pa.ˈnjœl] ‘spaniel (masc.)’

espagnol [ɛs.pa.ˈnjɔl] ‘Spanish (masc.)’
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c. varicelle [va.ri.ˈsɛ.lə] ‘chicken pox’

épagneule [e.pa.ˈnjœ.lə] ‘spaniel (fem.)’

espagnole [ɛs.pa.ˈnjɔ.lə] ‘Spanish (fem.)’

In addition to its lowering effect on a preceding nucleus, schwa has a

repelling effect on stress, a pattern which is widely attested

cross-linguistically (Crosswhite 2001; van Oostendorp 2000). The stress

rule of southern French can be descriptively summarized as follows:

stress falls on the last syllable if it is headed by a full (i.e. non-schwa)

vowel, otherwise it falls on the second-to-last syllable. Analyses of

southern French (Durand 1976, 1995; Watbled 1995) and abstract

analyses of standard French (Montreuil 2002; Selkirk 1978; van

Oostendorp 2000) consider that all vowels (except schwa) project their

own unary foot and that a schwa-headed syllable associates with the

previous syllable to form a trochee (Durand 1976, 1995; Selkirk 1976;

van Oostendorp 2000; Watbled 1995). Under this view, stress is simply

assigned to the head of the rightmost foot (Σ), as in haricot [(a)∑.(ri)∑.ˈ
(ko)∑], espagnol [(ɛs)∑.(pa)∑.ˈ(njɔl)∑], espagnole [(ɛs)∑.(pa)∑.ˈ(njɔ.lə)∑].
While the generalization on lexical stress needs to be captured

somehow, the postulation of generalized unary feet seems to make

southern French a typological oddity2), since unary feet are generally

regarded as degenerate (and thus exceptional) constituents (Hayes 1995:

§5.1). I argue that this state of affairs is only the result of considering

the metrical structure of this variety through the prism of constituency,

but it vanishes as soon as we treat suprasegmental structure in terms

of local relative prominence relations. The next section introduces

dynamic computational networks which, as we shall see, make such a

move possible.

3. Theoretical Framework

As pointed out by Goldsmith (1990), two important schools of thought

can be distinguished with respect to syllabification; the first one, the

sonority tradition, regards syllabicity as a sonority wave, that is to say

2) This issue is discussed in detail by Andreassen and Eychenne (2013).
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a rhythmic alternation of peaks and troughs. The second, more recent

tradition is the syntactic approach (see for instance Nespor and Vogel

2007). According to this view, prosodic information is organized in

terms of constituents, which can be further decomposed into immediate

sub-constituents, down to the terminal nodes (typically timing units or

moras). Dynamic Computational Networks belong to the first tradition;

they are a type of connectionist architecture which represents sonority

as an alternation of crests and troughs3).

3.1. Dynamic Computational Networks (DCN’s)

DCN’s were developed to account for syllabification and stress

phenomena (Goldsmith 1992, 1993; Goldsmith & Larson 1990, 1993; Laks

1995, 1997; Larson 1990, 1993). Contrary to other connectionist

architectures, which are generic and thus able to deal with any kind of

input that can be represented by numerical vectors, DCN’s were

specifically designed to model phonological strings. The fundamental

claim that underlies this type of architecture is that the rhythmic profile

of a string is the result of the local interaction between an inherent

sonority value for each unit of the network and lateral competition

between neighbor units. More specifically, a DCN is a single-layer

perceptron with bilateral inhibition/excitation connections, in which an

input of length n is represented as a network of n formal neurons, each

of which is connected to its immediate neighbors. Right-to-left and

left-to-right connections are each controlled by a single parameter (or

synaptic weight), α and β respectively (see 4 below).

Such a network can model syllabic structure, if units are taken to

represent segments, or metrical structure, in which case units represent

syllables (or more precisely syllabicity peaks)4). In a syllabic network,

3) Lack of space precludes a full discussion of syllabicity in phonological theory,

but see Goldsmith (2012) for a recent overview.

4) One of the most interesting results obtained in a DCN model is the analysis

of syllabification in Berber (see Goldsmith and Larson 1990), a language

known for allowing a wide range of syllabic consonants. As an example, the

form /tluat/ (a Berber place name) would be simply syllabificed as [tlwat],

with a complex onset, if syllabification were solely based on a traditional

sonority scale. Assigning appropriate positive values to the parameters of the
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each unit receives as its input a numeric value which corresponds to its

own inherent sonority, as well as the output of its immediate neighbors

weighted by the synaptic connections α and β.

(4) Dynamic Computational Network

The output of the neuron is the sum of the values received in input:

it corresponds to the derived sonority of the unit. (In addition, the

model allows for two positional activation values at each edge of the

network; their role is discussed in §3.3.) The key insight of this

architecture is that the derived sonority profile does not need be

identical to the inherent sonority of a string’s units. The distinction

between inherent and derived sonority roughly corresponds to the

distinction between input and output in generative models such as OT.

It must be emphasized that the present model does not claim by any

means that each phonological unit (a segment in a string) is

implemented as one physical neuron in the brain of a speaker. What the

model does claim is that phonological units are not symbols on which

combinatorial operations can be performed, but that they can be usefully

modelled as formal neurons which exhibit computational properties

inspired by physical neurons.

When it receives an input, the network dynamically evolves in time

model leads to a derived sonority profile where /l/ is a local sonority peak

and /u/ is a local trough (i.e. an onset), which corresponds to the observed

syllabification, i.e. the disyllabic form [tl̩.wat] where /l/ has a higher derived

sonority that /u/.
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until it stabilizes into an equilibrium state in which new updates no

longer modify the global state of the system (that is, the derived

sonority of the units no longer changes, or remains below an arbitrarily

small threshold). The update of the system is described by the

following difference equation (after Goldsmith 1992: 223):

(5) di
t+1
= ui + α · di+1

t
+ β · di-1

t

Where ui and di
t are the inherent and derived sonority of unit i at time

t, respectively. The variables of the system are summed linearly5). The

role of the parameters in the model requires further elaboration. They

vary from language to language, and each value pair describes a

particular linguistic system. However, because these values are

continuous, several ranges of values will describe (nearly-)identical

linguistic systems. The task of the learner in a DCN is thus to infer a

pair of values for α and β which generates the strings of the target

language.

In order to better understand the behaviour of a DCN, it is worth

considering a simple case. Let M(α,β) be a model whose parameters are

α and β, and let u be a sonority vector which corresponds to the input

values of the network. Figure (6) illustrates the behaviour of a DCN for

a model M(0,-0.5) and an input u = (0, 0, 0, 0, 0, 0, 0, 0, 1). (This

system is an approximation of the lexical stress pattern of French.)

As can be seen, the rightmost unit’s synaptic weight spreads leftward

in the network, by an exponential factor αn, where n is the distance

between two units. Because the weight is negative, the resulting pattern

is an alternation of peaks and troughs of decreasing amplitude. This

pattern characterizes rhythmic alternations: in this example, the sonority

of even nodes is inhibited, whereas the sonority of odd nodes is

enhanced; the magnitude of the change diminishes the further away a

unit is from the source node.

This alternation corresponds to the alternation between stressed and

unstressed syllables at the metrical level and to the alternation between

5) Prince (1993) demonstrated that a DCN is a discrete approximation of a

dynamic linear model.
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consonants and vowels at the syllabic level. One of the most compelling

aspects of this approach is that these properties are not axioms of the

theory. In frameworks such as OT, the tendency to favor alternating

rhythm is assumed to be the result of the presence of constraints such

as *CLASH (“avoid consecutive peaks”) and *LAPSE (“avoid

consecutive troughs”), which do not appear to be independently

motivated. By contrast, in a DCN, this tendency is the direct

consequence of the lateral competition between the units of the string,

under certain parameter settings.

(6) Spreading of the sonority wave for u = (0, 0, 0, 0, 0, 0, 0, 0, 1),

with α = -0.5 et β = 0

This basic architecture was further developed in Larson (1993).

Larson postulates three interconnected representational levels, each of

which is a network. The autosegmental network (A) specifies the

featural structure of segments and computes their inherent sonority; the

syllabic network (S) determines the sonority profile of the segmental

string; the metrical level (M) determines the stress pattern of the

string. The simplest model assumes a feed-forward relation between the

3 levels (A → S → M): the dynamics of the autosegmental level
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determine the sonority of each unit segment; the syllabic level

determines the location of syllabicity peaks (i.e. nuclei), which in turn

feed the metrical level. As we shall see in 3.3, the facts of southern

French suggest that feedback connections must be allowed between the

syllabic and metrical networks. In addition, it is worth mentioning that

the autosegmental level has received very little attention so far, and it

is often represented as ad hoc numerical values (but see Larson 1993:

22-28 for a number of suggestions). Since this paper is primarily

concerned with segmental syllabic structure, this approach is also

adopted here.

3.2. DCN and French Syllabification

Laks (1995) successfully applied this connectionist architecture to

French syllabification. The author analyzed in detail a corpus of 794

words (for a total of 832 syllabified forms) which were judged

representative of the types of syllabic structures found in French. For a

number of words, the corpus contained several possible syllabifications,

such forms with or without schwa, with syneresis or dieresis of high

vowels, etc. After training on a subset of the data set, the DCN

reached a performance of 99.87% in predicting the syllabic structure.

These results are significant since they show that this kind of

non-symbolic architecture is able to learn the syllabic structure of

French without the rich a priori vocabulary that is usually assumed in

symbolic models. Syllabic structure is conceived of as an emergent

property of the temporal dynamics of the network. However, Laks’

model is a significant departure from Goldsmith and Larson’s original

proposal. In his model, the parameters α and β are no longer treated as

scalar values that control the connections of the network (left and right

respectively), but both parameters are indexed on a number of

predetermined natural classes of segments. Laks’ implementation

distinguishes 6 classes, namely vowels (V), glides (G), plosives (O),

fricatives (F), nasals (N) and liquids (L). The parameters of the models

should thus be represented as two vectors (a and b) whose dimensions

correspond to natural classes of sounds, namely a = (αV, αG, αO, αF, αN,

αL) and b = (βV, βG, βO, βF, βN, βL).
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Several remarks regarding this extension of the ‘standard’ DCN are in

order. First, it appears that the intrinsic sonority of segments (or

classes of segments) is encoded twice in this approach: once as the

inherent values of the segments, and once in the α and β parameters,

since these target specific classes. Furthermore, before learning takes

place, vowels are assigned positive α and β parameters and a positive

inherent sonority, whereas other segments are assigned negative

parameters and inherent sonority (Laks 1995: 63, table 5)6). This initial

parameter setting constitutes in itself a strong a priori bias concerning

the asymmetry between syllabic and non-syllabic segments, since its

net effect is to favour vowels as peaks. It is thus legitimate to wonder

what the performance of the network would be in the absence of such

a priori knowledge about natural classes. Last but not least, this

extension of DCN’s introduces more degrees of freedom in the network,

which makes it more expressive but also less restrictive. Because the

parameters of a standard DCN are only two scalar values, they explore

a much more restricted search space, which makes them computationally

more tractable and limits, to a certain extent, the possibility of

over-generating unattested patterns.

The rest of the paper develops an analysis of the metrical structure

of southern French using the original architecture put forth by

Goldsmith and Larson. The next sub-section presents the model in

detail, paying attention to the interaction between the syllabic and

metrical networks.

3.3. Architecture of the Model

Since DCN’s do not build constituents, metrical structure is

constructed out of syllabicity peaks and troughs. Specifically, the

syllabic network must include a recognition layer that is able to identify

sonority maxima and minima (Larson 1993: 40-43). In Goldmith and

Larson’s model, the syllabic recognition layer scans the derived sonority

d of each unit i and checks whether it satisfies either of the following

conditions:

6) Glides are actually assigned a null inherent sonority and negative α and β.



108 Eychenne, Julien

(7) Identification of maxima and minima in the syllabic recognition

layer (adapted from Larson 1993: 41):

Maxima: BOOLEAN(di > di-1 AND di > di+1)

Minima: BOOLEAN(di < di-1 AND di < di+1)

Where BOOLEAN is a function that returns 1 if the condition is true

and 0 otherwise. However, an important issue with DCN’s, which was

clearly identified by Larson (1993: 99-102, 108), is the status of sonority

plateaus. This problem is particularly acute is the case of hiatuses,

which abound in many languages, including French. Indeed, it is

extremely unlikely that two adjacent units in a DCN have exactly the

same derived sonority. Therefore, under a strict understanding of the

definition of a peak as a local sonority maximum, a DCN is unable to

account for hiatuses (cf. southern French paysage ‘landscape’

[pe.i.za.ʒə]). One ‘naïve’ approach might be to determine a range within
which two adjacent nodes are considered as level, but in practice this

would be extremely error-prone and the threshold should be determined

empirically in an ad hoc fashion, which is clearly not satisfactory. Laks

(1995) offers a more principled solution to this problem. In his model, all

and only the units whose derived sonority is positive are treated as

peaks. In other words, 0 is interpreted as a baseline that distinguishes

syllabic segments from non-syllabic ones in the sonority plane7).

Troughs remain identified as local sonority minima.

The artificial learner implemented in this paper builds upon this

insight. The interface between the syllabic and metrical networks thus

includes the following function to identify the nodes of the metrical

network:

(8) Peaks: BOOLEAN(di > 0)

The nodes of the network which are identified as peaks by the

syllabic recognition device (according to (8)) become input units to the

metrical network. As a result, there is no longer a one-to-one mapping

7) A very similar idea is developed in Klein (1993), although not from a

connectionist perspective.
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between local sonority maxima and syllabicity peaks. For instance, a

hiatus occurs whenever two consecutive units have a positive derived

sonority.

As we saw earlier, French stress generally falls on the last syllable

of a word unless it is headed by a schwa. Quantity-insensitive

languages with demarcative stress (such as French) generally align the

main prominence on either edge of the string, with the possibility of

marking a number of syllables at that end as extrametrical (Larson

1993: 45). In a DCN, right-edge prominence is achieved by assigning a

final positional activation value to the rightmost node in the metrical

network (see figure 4). Consider the form haricot ‘bean’ [a.ri.ko]. A

proper syllabification of this form will identify 3 peaks, namely [a], [i]

and [o]. The input to the metrical network will be a vector u = (1, 1,

1). Edge enhancement will raise the sonority of the rightmost unit,

yielding u' = (1, 1, 2). Given adequate values for α and β (as in 6), the

DCN will assign the highest derived sonority to the rightmost node and

will create an alternating pattern of peaks and troughs.

As we saw in Section 2, a key characteristic of southern French is

the existence of a lexical schwa. In order to adequately model its

prosodic weakness, it is necessary to take into account the interaction

between the syllabic and metrical networks. The Boolean recognition of

peaks introduces a non-linear relation between the syllabic and metrical

networks. Indeed, the input values to the metrical network are not

proportional to the output values of the syllabic one; instead, all the

units whose value is above a given threshold (namely, 0) are passed as

input units to the metrical level, with the same inherent sonority (1). As

a result, the metrical network makes no qualitative difference between

vowels, and it is not able to distinguish between schwa and full vowels

on its own.

It is tempting at first sight to treat French schwa as an extrametrical

vowel, but such an option is clearly not workable. Doing so would force

one to analyze obstruent+liquid clusters as codas, as in sobre ‘sober’

[(sɔbr)∑.〈ə〉] and socle ‘base’ [(sɔkl)∑.〈ə〉]. While it may be argued
that in varieties where final schwa has been lost, such as North

American varieties, these clusters have indeed been reanalyzed as codas

and are often simplified (e.g. /sɔbr/ → [sɔb]), we find no independent
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evidence that these clusters can be analyzed as codas in southern

French. They never appear in syllable-final or word-final position,

except after schwa deletion in the case of innovative speakers. More

critical is the fact that this analysis wrongly predicts that ‘extrametrical’

schwa cannot occur morpheme-internally due to the peripherality

condition, which requires extrametrical constituents to align with either

edge of their domain (Hayes, 1995: 57-58). This prediction is falsified

by the existence of monomorphemic forms like céleri ‘celery’ [sɛləri] and
écrevisse ‘crayfish’ [ɛkrəvisə], where the internal schwa is prosodically
weak and triggers mid-vowel lowering, according to the loi de position

summarized in (2).

In order to account for the prosodic weakness of schwa, I propose

that this vowel is simply unable to project from the syllabic to the

metrical network. This approach captures the spirit of Selkirk’s (1978)

analysis and, in an OT context, van Oostendorp’s (2000). To model the

behavior of schwa in OT, van Oostendorp develops a schema of

projection constraints which require that the head of certain prosodic

constituents (in particular, the foot) dominate certain features.

Specifically, the prosodic weakness of schwa is due to the fact that

projection constraints prevent it from accessing the head position of a

foot because it is featureless. In the connectionist architecture adopted in

this paper, this insight is reinterpreted as the fact that schwa is

invisible at the metrical level. As we have seen in (8), only the units

whose derived sonority is greater than 0 access the metrical level. The

metrical invisibility of schwa is therefore the result of it having a

non-positive derived sonority. This property is implemented in the

learning module as a feedback connection from the metrical network

back to the syllabic network. The next section develops an analysis of

a corpus of southern French in order to demonstrate the usefulness of

the model.

4. Analysis

4.1. The corpus

In order to use realistic data, the corpus was constructed from
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orthographically transcribed recordings drawn from the project

« Phonologie du français contemporain : usages, variétés, structure »

(PFC8)) (Durand, Laks et Lyche 2002, 2009). I used the transcriptions of

10 speakers from a small village in the South West of France (Douzens,

in the Languedoc area). The transcribed part of the recordings

represents 185 minutes of conversation in total (about three hours). I

also added the content of the word list and the read text from the PFC

survey protocol, which were specifically designed to study a number of

phonological phenomena. The raw corpus initially contained 46,682

tokens, representing 3,314 types. This type list was cleaned up to

eliminate noise such as misspelled variants and family names. Since this

study is concerned with syllabification, it was decided upon reflection to

remove all duplicate homophones whose lemmas were identical, as in

inflected forms such as venu ∼ venues [vøny] and arrivé ∼ arrivait

[aʁive]. There were many such redundant forms in the data and they
would have blurred the results since it would have been difficult to

isolate the ability of the network to truly generalize to unseen forms on

the hand from its ‘memory’ of forms already encountered in the training

data on the other.

The cleaned-up word list was transcribed using a broad IPA

transcription according to the general pronunciation of southern French

and then syllabified following traditional assumptions about the syllabic

structure of southern French (Durand 1995). In particular, the loi de

position was used as a guide to syllabification for word-internal

clusters. By way of example, the word exemple ‘example’ was

transcribed [ɛɡ.zaɴ.plə] (with a ‘coda’ /ɡ/) since the first vowel of the
word is mid-open. /r+j/ clusters were treated as tautosyllabic (e.g.

intérieur ‘inside (noun)’ [ɛɴ.te.rjœr]), even though a heterosyllabic

pronunciation seems to be spreading (e.g. [ɛɴ.tɛr.jœr]), especially among
younger speakers9).

There is no firm agreement about the status of the vowel written

<e> in the initial syllable of polysyllabic forms (e.g. petit ‘small’ [pøti]).

8) See http://www.projet-pfc.net

9) A proper treatment of /r+j/ sequences would require taking into account the

interaction between phonology and morphology, which is beyond the scope of

this paper.
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Durand, Slater & Wise (1987) argue that this vowel is phonetically and

phonologically indistinguishable from the stable vowel written <eu> in a

word like meunier ‘miller’ [mønje]. I followed their analysis and

transcribed all such <e>’s as stable vowels.

Nasal vowels were transcribed as an oral vowel followed by a nasal

appendix, which is their canonical realization in southern varieties of

French (Durand 1988). The appendix was transcribed as [ɴ].
The final corpus contains 2,530 forms. It was randomized and divided

into three sets, as has become standard practice in machine learning: a

training set containing 60% of the data (1,518 words), a validation set

and a test set, each containing 20% of the data (506 words). A short

excerpt of the corpus is given below10):

(9) génial ʒe.njal CV.CGVC

généalogiques ʒe.ne.a.lo.ʒi.kə CV.CV.V.CV.CV.CV

général ʒe.ne.ral CV.CV.CVC

générale ʒe.ne.ra.lə CV.CV.CV.CV

génération ʒe.ne.ra.sjɔɴ CV.CV.CV.CGVN

génétique ʒe.ne.ti.kə CV.CV.CV.CV

The corpus contains 6,440 syllables in total, corresponding to 27

different syllabic types. The most frequent ones are summarized in table

(10). Unsurprisingly, the CV pattern is by far the most frequent,

accounting for over half of the corpus. Even though southern French

tolerates complex onsets, it is clear that complex codas tend to be

avoided. As a matter of fact, many complex codas found in standard

French (such as /rn/ in alterne ‘alternate’ [al.tɛʁn]) are not found
because of the presence of a schwa ([al.tɛʁ.nə]).

(10) Main syllabic types in the corpus

type CV CVN CVC CCV V CGV VN CGVN

tokens 3619 572 552 425 383 242 133 131

% 56.2 8.9 8.6 6.6 5.9 3.8 2.1 2.0

10) C = consonant (including nasal stops), V = vowel, G = glide and N = nasal

appendix.4
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4.2. Learning Protocol

The learning algorithm that was used, originally developed by

Goldsmith and Larson (see Larson 1993: chap. 6), is inspired by a

learning procedure known as “simulated annealing” (see the appendix

for a more detailed overview)11). The model is a supervised learning

algorithm, which relies on a parameter called “temperature”, initially set

to a very high value. The learner is presented with items from the

lexicon, one at a time. Each time a new form is presented, the

temperature decreases according to a cooling schedule, whether or not

the network successfully predicts the correct form.

Each presentation of the whole training constitutes one epoch. At the

beginning of each new epoch, the lexicon is randomized so as to avoid

any sequence effect. When the temperature of the system falls below a

predefined threshold, the system is considered frozen in a stable state

and no further learning takes place. The intuition behind this learning

algorithm is that the magnitude of the change for α and β depends on

the temperature of the system: the hotter the system, the bigger the

change may be. The magnitude of the change asymptotically decreases

towards 0 as the system cools down.

It must be born in mind that because the algorithm is stochastic,

learning takes place in a non-deterministic way and the outcome thus

differs on each new trial. In each simulation, the inherent sonority of

the units is re-initialized randomly before learning starts. This encodes

the linguistic hypothesis that the learner has no direct access to the

underlying sonority of the segments of the target language; it only has

access to the rhythmic profile of the strings to which it is exposed. As

in all supervised learning algorithms, the learner tries to iteratively

approximate the target forms of the language by comparing its

predictions to the forms observed in the training data. Since the output

of a DCN is a vector of continuous sonority values, rather than

constituents, inputs and outputs need to be processed so as to make

11) The learning algorithm was implemented in the Python programming

language, using the Numpy library for numerical computing; see

http://www.python.org and http://www.numpy.org. The source code and the

data set may be obtained from the author upon request.
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them directly comparable. The sonority wave of the syllabic network is

transformed into a sequence of peaks and troughs, according to three

degrees of prominence: H (high) corresponds to a local sonority

maximum; L (low) corresponds to a local sonority minimum and all

other segments are labeled O (other). For example, the word blessé
‘hurt’ [ble.se] will be assigned the following sonority profile: LOHLH.

Furthermore, we will use the notation〈H〉to represent a local sonority

maximum whose derived sonority is non-positive, as in the case of

schwa. For instance, the word pâte ‘pasta’ [patə] will be assigned the
following profile: LHL〈H〉. The syllabification of each word in the

corpus was converted to a sonority curve according to these premises.

Previous research in DCN’s only used a training set and (sometimes)

a test set to train their models. Although this was a common practice

in the early nineties, this is now considered problematic in machine

learning; since the learning algorithm contains a number of hyper-

parameters which must be adjusted to the type of data on which the

network is trained, there is a risk of overfitting the model to the data.

The procedure that was followed was to train and adjust the hyper-

parameters of the model on the training set, and then use the validation

set to check the accuracy of the model on unseen data. Once the

hyper-parameters were set so as to not overfit the training data, the

test set was used to measure the predictive power of the model. We

now turn to the results of the simulations.

4.3. Results

This section reports on the results obtained with the architecture laid

out above (and detailed in the appendix), focusing on the syllabic

network. In order to avoid any bias in the selection of the model, 1,000

simulations were run so as to get a fair representation of the average

performance of the architecture. The mean performance of the network

on the training set was 99.38%. The mean prediction score on the

validation set was slightly lower at 98.48%, ranging from a minimum of

96.84% to a maximum of 98.81%. Unsurprisingly, the network was

rather slow to converge since the inherent sonority values and the

parameters were initially assigned randomly and the network had to
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find an optimal setting for all of them. It takes on average 18.6 epochs

for the network to stabilize. There is however a very high variance

across simulations (standard deviation σ = 19.5). The fastest simulation

converged in only 3 epochs, whereas the slowest one took 329 epochs.

Importantly, it must be stressed that none of the simulations failed and

that the model always converged.

To get an overall picture of the behaviour of the architecture, I

computed an average model over the 1,000 simulations. This model

simply averages over all the values obtained for the parameters α and β 

as well as for the learned inherent sonority of the segments. The mean

values of α and β are given in (11):

(11) mean values for α and β over 1,000 simulations for the syllabic

network:

α = 0.185

β = 0.005

Let’s now turn to the inherent sonority values that were learned.

Average results are reported in (12), sorted in descending order from

left to right, top down:

(12) Inherent sonority learned by the model (averaged over 1,000

simulations)

a : 4.73 ɛ : 3.78 y : 3.57

ɔ : 3.55 i : 3.37 ø : 2.31

e : 3.07 o : 2.86 u : 2.21

œ : 2.05 ə : -1.29 ɥ : -1.41
w : -1.99 j : -2.33 ɲ : -3.02
ɴ : -3.64 r : -4.01 l : -4.26

ʃ : -5.17 ʒ : -5.16 z : -5.26

g : -6.55 n : -6.96 k : -7.23

v : -7.24 f : -7.51 m : -7.81

b : -7.86 s : -8.19 d : -8.56

p : -9.37 t : -11.05

A few remarks regarding the inherent sonority that are assigned to
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the segments are in order. First, all vowels (except schwa) are assigned

a positive value, which does not come as a surprise given the

architecture of the model (values in the positive half-plane are

syllabicity peaks). Schwa is assigned a negative sonority value, but its

sonority is higher than all the consonants. The network assigns a fairly

high sonority in the negative half-plane to the three glides. This is

consistent with the fact that glides are considered intermediate segments

between vowels and consonants and are often the result of the

weakening of high vowels. Obstruents, on the other hand, are all

assigned a low negative sonority, with the voiceless stops [p] and [t] at

the very bottom of the scale. The derived sonority values for the liquids

/l/ and /r/ are very close to each other, which is certainly the result of

their shared distributional properties (e.g. both can appear as the second

member of a complex onset, as in table [ta.blə]).
The inherent sonority of nasals is much less consistent, but their

distribution is not uniform. The segments [m] and [n] can both appear

in onset and coda position. The consonant [ɲ] is restricted to onset
positions, and it is nowadays realized as [nj] by many speakers. As

such, it seems to lie outside of the consonantal system. Finally, the

relatively high sonority (between glides and liquids) of [ɴ], the nasal
appendix, is consistent with the fact that it only appears in post-vocalic

position.

In order to test the predictive power of the average model, it was run

once against the test data set, which was never seen during training.

The model made 6 prediction errors out of 506 data points, which

corresponds to a performance of 98.81%. To fully appreciate the

performance of DCN, I run a baseline model with alpha and beta set to

0 (which means that there is no lateral influence of units on one

another) and setting the inherent value of the units according to a

traditional sonority scale (Goldsmith 1990: 111), with stops at the

bottom of the scale (-5) and open vowels at the top (+5). Such a model

obtained a performance of 92.49% on the test set. This shows that,

even though southern French syllabicity mostly conforms to the sonority

sequencing principle, inherent sonority alone is not sufficient and DCN’s

offer a compelling architecture to model syllabicity in cases where

syllabification does not follow sonority.
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To show the importance of the dynamics of the network in such

cases, let’s consider the form discute ‘chat’ /diskytə/, whose underlying
structure is represented in the average model by the sonority vector u

= (-8.56, 3.37, -8.19, -7.23, 3.57, -11.05, -1.29). On the sole basis of the

inherent sonority values, the network would predict the sonority profile

*LHLOHL〈H〉, corresponding to the syllabification *[di.sky.tə].
Remember however that according to the loi de position, the trough

should be /k/, since /s/ has a lowering effect on a preceding vowel

when it is mid. Figure (13) shows the predicted derived sonority curve

of this word in the average model, which corresponds to the vector d =

(-8.55, 1.75, -7.91, -8.68, 1.91, -10.71, -3.27). This syllabic curve is

consistent with the effect of the loi de position. Even though the

derived sonority of /s/ is quite low and only slightly higher than /k/, it

is high enough that it is not a local minimum in the output form. This

post-peak/pre-trough position corresponds precisely to the traditional

notion of coda, but no constituent structure needs be posited.

Let’s now turn to the behaviour of schwa in more detail. As we have

seen in §3.3, the properties of this vowel in this approach stems from

the fact that it is prosodically invisible in the metrical network. Let’s

consider a word with only an alternation of vowels and consonants but

containing a schwa, such as viticole ‘wine-making’ [vitikɔlə]. The
average model assigns the derived sonority d = (-7.23, 1.98, -10.68, 1.36,

-6.97, 2.24, -3.86, -2.00), which corresponds to the sonority curve

LHLHLHL〈H〉. Figure (14) plots the derived sonority predicted by the

network for this form, along with the 0 baseline for the sake of clarity.

The three peaks above the baseline represent the three full vowels.

Schwa, which corresponds to the eighth node, is a local sonority

maximum; however, because of the non-linear thresholding function in

the recognition layer (see (8)), it fails to be projected to the metrical

network.

As a result, the node corresponding to the vowel [ɔ] becomes the
rightmost node and receives the main lexical prominence by virtue of

positional activation. Under this interpretation of the prosodic properties

of schwa, the trochaic foot becomes unnecessary to account for the

suprasegmental structure of southern French. The sonority pattern

exhibited by the network in (14) would more closely match the concepts
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of supersyllable or recursive syllable which have been put forth in the

literature (see Hall 2006: 403 for an overview).

(13) derived sonority of discute

(14) derived sonority of viticole



Inducing Suprasegmental Structure without Constituency 119

I believe, however, that the metrical grid (Prince 1983) is a far better

and more direct symbolic approximation of a DCN architecture, as has

been argued by Laks (1997). The metrical structure of viticole may thus

be represented as in (15) as the layering of several levels of

prominence. Crucially, though, these layers are not understood to

represent pre-wired, innate symbolic categories but emerge from the

dynamics of the architecture that has been developed.

(15) Metrical grid representation of viticole

Metrical prominence: ×

Peaks: × × ×

Sonority maxima: × × × ×

v i t i k ɔ  l ə

To conclude this overview of the behaviour of our artificial learner, it

is worth considering the prediction errors of the average model on the

test set (the set which was never seen in training) from a qualitative

point of view. These are listed in (16):

(16) form expected curve predicted curve

islamikə HOLHLHL〈H〉 HLOHLHL〈H〉

spɔr LOHL HLHL

spɔrtivə  LOHOLHL〈H〉 HLHOLHL〈H〉

spɛktaklə LOHOLHLO〈H〉 HLHOLHLO〈H〉

staʒə     LOHL〈H〉 HLHL〈H〉

staɴd LOHOL HLHOL

It is striking to observe that all the prediction errors involve /sC/

clusters, and 5 out of 6 are in word-initial position. The cluster /sl/ is

not a native cluster in French, and there was only one form in the

training corpus that contained it (slip ‘underpants’ [slip]), moreover in

word-initial position. The lack of integration of this cluster within the

phonological grammar of southern French is supported by the fact that

many speakers voice the /s/ (slip [zlip]; islamique [izlamikə]). Anyway,
islamique is an assimilated borrowing in French and the prediction error

of the network seems to simply reflect the performance of the model in
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the presence of an illicit cluster. Furthermore, the status of word-initial

/sC/ clusters is a well-known problem in phonological theory12). The

Romance prosthesis (Alkire and Rosen 2010: §2.1) in word-initial /sC/

clusters lends support to the idea that these clusters are indeed special

(see Latin schola > *iscola > French école, Spanish escuela ‘school’). It
might well be the case that the network’s predictions in these cases are

not errors, but reflect the fact that /s/ is actually a local maximum of

sonority in this environment, at least for some languages such as

French.

5. Conclusion

In this paper, I have developed a connectionist analysis of the

suprasegmental structure of southern French, in a model based on

dynamic computational networks. Building upon previous work by

Larson (1993) and Laks (1995) in particular, I have presented a

two-layer architecture to model syllabic and metrical structure. Because

of the computational properties of DCN’s, the interface between the

syllabic and metrical networks was designed so that all and only the

nodes whose derived sonority is positive are visible in the metrical

network. While this property was implemented so as to be able to deal

with sonority plateaus, it was shown to be useful to model the

behaviour of schwa: in this architecture, schwa is simply a local

sonority maximum in the negative half-plane of the syllabic network.

This connectionist architecture was shown to successfully model the

suprasegmental structure of southern French, and it was shown that the

errors observed in the test set had to do with a very specific

phonotactic pattern, namely sequences of /s/ + consonant, mostly

word-initially.

This study has shown that a non-trivial part of the suprasegmental

structure of southern French can be modelled without prosodic

constituency. As mentioned in §2, the metrical structure of southern

French, while very simple, seems to be a typological exception: in all

12) See Kaye (1992) for analysis of /sC/ clusters as heterosyllabic based on

evidence drawn from Italian, Portuguese, Ancient Greek and British English.
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the analyses I am aware of, the trochaic foot seems necessary to

account for the interaction of schwa and stress on the one hand, and

schwa and mid-vowels on the other; yet all other feet appear to be

degenerate unary feet, a pattern which seems to be highly uncommon

(see Andreassen and Eychenne 2013 for a fuller discussion of this

issue). The present approach solves this problem by abandoning

constituency entirely. The foot and the syllable receive no explicit

theoretical status as such: they are an epiphenomenon of the interaction

between two rhythmic levels which share the same architecture and

computational properties.

If the approach to schwa laid out in this paper is correct, it opens

interesting perspectives for the analysis of other languages. Van

Oostendorp (2003) distinguishes three types of schwas from a

typological perspective: schwas that alternate with zero (often epenthetic

schwas), schwas that are the result of vowel reduction and stable

schwas. Schwa in southern French is an instance of the latter category,

but the DCN might prove an insightful framework to model other types

as well. For instance, reduction to schwa in languages such as English

might be captured as a lowering of the derived sonority of a full vowel

under the influence of stress, which might be implemented as a form of

backpropagation from the metrical network to the syllabic network.

Similarly, this architecture could be useful in modelling glide-formation

phenomena, such as those found in northern varieties of French (e.g.

tuer ‘to kill’ /tye/ → [tɥe]).
I believe that the full potential of DCN’s for modelling suprasegmental

structure has yet to be explored. Even though a number of

quantity-insensitive systems have been successfully modelled in DCN’s

(Goldsmith 1994), quantity-sensitive systems have received almost no

attention. An analysis of a broad range of languages in this framework

using large corpora will prove invaluable in testing this architecture on

a larger scale and refining it. Further progress may also be achieved by

extending the model, perhaps by adding one or several additional layers,

to move beyond the lexical level and model connected speech.



122 Eychenne, Julien

References

Alderete, J., P. Tupper and S.A. Frisch. 2013. Phonological Constraint Induction

in a Connectionist Network: learning OCP-Place constraints from data.

Language Sciences 37, 52-69.

Alkire, T. and C Rosen. 2010. Romance Languages: A Historical Introduction.

Cambridge: Cambridge University Press.

Andreassen, H. N. and J. Eychenne. 2013. The French Foot Revisited. Language

Sciences. http://dx.doi.org/10.1016/j.langsci.2013.02.016

Armstrong, N. S. Unsworth. 1999. Sociolinguistic Variation in Southern French

Schwa. Linguistics 37.1, 127-56.

Bechtel, W. and A. Abrahamsen. 2002. Connectionism and the Mind. Parallel

Processing, Dynamics, and Evolution in Networks, Oxford: Blackwell

Publishing.

Crosswhite, K. 2001. Vowel Reduction in Optimality Theory. New York and

London: Routledge.

Dell, F. 1980. Generative Phonology and French Phonology. Cambridge:

Cambridge University Press.

Durand, J. 1976. Generative Phonology, Dependency Phonology and southern

French. Lingua e Stile 11.1, 3-23.

Durand, J. 1995. Alternances vocaliques en français du Midi et phonologie du

gouvernement. Lingua 95, 27-50.

Durand, J. 1988. Les phénomènes de nasalité en français du Midi: phonologie de

dépendance et sous-spécification. Recherches Linguistiques 17, 29-54.

Durand, J., B. Laks and C. Lyche. 2002. La phonologie du français contemporain:

usages, variétés et structure. In Romanistische Korpuslinguistik-

Korpora und gesprochene Sprache/Romance Corpus Linguistics-

Corpora and Spoken Language, eds. C. Pusch and W. Raible, 93-106.

Tübingen: Gunter Narr Verlag.

Durand, J., B. Laks and C. Lyche. 2009. Le projet PFC : une source de données

primaires structurées. In Phonologie, variation et accents du français, eds.
J. Durand, B. Laks and C. Lyche, 19-61. Paris: Hermès.

Durand, J., C. Slater and H. Wise. 1987. Observations on Schwa in Southern

French. Linguistics 25.2, 983-1004.

Goldsmith, J. 1990. Autosegmental & Metrical Phonology. Oxford: Blackwell.

Goldsmith, J. 1992. Local Modeling in Phonology. In Connectionism: Theory and

Practice, ed. S. Davis, 229-246. Oxford: Oxford University Press.

Goldsmith, J. 1993. Harmonic Phonology. In The Last Phonological Rule, ed. J.

Goldsmith, 21-60. Chicago and London: The University of Chicago Press.

Goldsmith, J. 1994. A Dynamic Computational Theory of Accent Systems. In



Inducing Suprasegmental Structure without Constituency 123

Perspectives in Phonology, eds. J. Cole and C. Kisseberth, 1-28.

Stanford: Center for the Study of Language and Information.

Goldsmith, J. 2011. The Syllable. In The handbook of phonological theory, eds. J.

Goldsmith, J. Riggle and C. L. Alan, 164-196. Oxford: Wiley-Blackwell.

Goldsmith, J. and G. Larson. 1990. Local Modelling and Syllabification. Papers

from the 26th Annual Meeting of the Chicago Linguistic Society:

Parasession on the syllable in phonetics and phonology 26.2, 129-142.

Chicago: Chicago Linguistic Society.

Goldsmith, J. and G. Larson. 1993. Using Networks in a Harmonic Phonology. In

Papers from the 28th Annual Meeting of the Chicago Linguistic Society,

vol. 2, 94-125. Chicago: Chicago Linguistics Society.

Goldwater, S. and M. Johnson. 2003. Learning OT Constraint Rankings Using a

Maximum Entropy Model. Proceedings of the Workshop on Variation

within Optimality Theory.

Hall, Nancy. 2006. Cross-linguistic Patterns of Vowel Intrusion. Phonology 23.3,

387-429.

Hannahs, S. 1995. Prosodic Structure and French Morphophonology, Tübingen:

Niemeyer.

Hayes, B. 1995. Metrical Stress Theory. Principles and case studies. Chicago:

The University of Chicago Press.

Hayes, B. and C. Wilson. 2008. A Maximum Entropy Model of Phonotactics and

Phonotactic Learning, Linguistic Inquiry 39.3, 379-440.

Kaye, J. 1992. Do You Believe in Magic? The Story of s+C Sequences. SOAS

Working Papers in Linguistics and Phonetics 2, 293-313.

Klein, Marc. 1993. La syllabe comme interface de la production et de la réception

phoniques. In De natura sonorum. Essais de phonologie, eds. B. Laks

and M. Plénat, 101-142. Saint-Denis: Presses Universitaires de Vincennes.

Laks, B. 1995. A Connectionist Account of French Syllabification, Lingua 95,

51-76.

Laks, B. 1997. Phonologie accentuelle. Métrique, autosegmentalité, constituance.
Paris: CNRS Éditions.

Larson, G. 1990. Local Computational Networks and the Distribution of Segments

in the Spanish Syllable. Papers from the 26th Annual Meeting of the

Chicago Linguistic Society: Parasession on the syllable in phonetics and

phonology.

Larson, G. 1993. Dynamic Computational Networks, and the Representation of

Phonological Information, Unpublished PhD thesis, University of Chicago.

McClealland J., D. Rumerhart eds. 1986a. Parallel Distributed Processing.

Explorations in the microstructure of Cognition. Volume 1: Foundations.

Cambridge and London: MIT Press.



124 Eychenne, Julien

McClealland J., D. Rumerhart eds. 1986b. Parallel Distributed Processing.

Explorations in the microstructure of Cognition. Volume 2: Psychological

and Biological Models. Cambridge and London: MIT Press.

Montreuil, J.-P. 2002. Vestigial Feet in French. Proceedings of the 2002 Texas

Linguistic Society Conference on Stress in Optimality Theory. University

of Texas at Austin, Austin.

Nespor, M., Vogel, I. 2007 [1986]. Prosodic phonology: With a new foreword.

Berlin and New York: Mouton de Gruyter.

Pater, J. 2009. Weighted Constraints in Generative Linguistics. Cognitive Science

33, 999-1035.

Potts, C., J. Pater, K. Jesney, R. Bhatt and M. Becker. 2010. Harmonic Grammar

with Linear Programming: from linear systems to linguistic typology.

Phonology 27, 77-117.

Prince, A. 1983. Relating to the Grid. Linguistic Inquiry 14.1, 19-100.

Prince, A. 1993. In Defense of the Number i. Anatomy of a Linear Dynamical

Model of Linguistic Generalizations, Technical Report #1, Rutgers

University Center for Cognitive Science. Available from

http://ruccs.rutgers.edu/~prince/.

Prince, A. and P. Smolensky. 1993. Optimality Theory: constraint interaction in

Generative Grammar, New Brunswick: Rutgers University Center for

Cognitive Science.

Rizzolo, O. 2002. Du leurre phonétique des voyelles moyennes en français et du

divorce entre licenciement et licenciement pour gouverner. Unpublished

PhD thesis, Université de Nice-Sophia Antipolis.

Schane, S. 1968. French Phonology and Morphology. Cambridge, MA: MIT

Press.

Selkirk, E. 1978. The French Foot: on the status of ‘mute’ e. Studies in French

Linguistics 1.2, 141-150.

Soderstrom, M., D.W. Mathis and P. Smolensky. 2006. Abstract Genomic

Encoding of Universal Grammar in Optimality Theory. In Smolensky and

Legendre (eds), 403-471.

Smolensky, P. and G. Legendre eds. 2006. The Harmonic Mind. From neural

computation to optimality-theoretic grammar. 2 volumes. Cambridge, MA

and London: MIT Press.

Tesar, B. and P. Smolensky. 2000. Learnability in Optimality Theory. Cambridge:

MIT Press.

Tranel, B. 1981. Concreteness in Generative Phonology: Evidence from French.

Berkeley: University of California Press.

van Oostendorp, M. 2000. Phonological Projection: a theory of feature content

and prosodic structure. Berlin: Mouton De Gruyter.



Inducing Suprasegmental Structure without Constituency 125

van Oostendorp, M. 2003. Schwa in Phonological Theory. In The Second Glot

International State-of-the-Article Book, eds. L. Cheng and R. Sybesma,

431-461. Berlin: Mouton de Gruyter.

Walker, D.C., 2001. French Sound Structure. Calgary: University of Calgary

Press.

Watbled, J.-P. 1995. Segmental and Suprasegmental Structure in Southern

French. In Linguistic Theory and the Romance Languages, eds. J.C.

Smith and M. Maiden, 181-200. Amsterdam: John Benjamins.



126 Eychenne, Julien

Appendix: Implementation of the model

The goal of learning in a DCN is to assign a sonority value to the

segments of the language and to find a pair of parameters (α,β) such

that the network correctly predicts all the strings of the target

language. A DCN accomplishes this task by iteratively computing the

derived sonority d of each unit at time t, until the difference in derived

sonority for each unit between t and t+1 is null or, in practice, lower

than an arbitrary threshold δ (i.e. |dt - dt+1| < δ). Prince (1993: 20)

proved that this learning problem could be tackled more directly using

linear algebra. Equation (5) can be formulated as (17) in vectorized

form:

(17) d ← Wn d + u

Where d is the derived sonority vector of dimension n (initially set to

0), u is a vector representing the inherent sonority of the string and W

a tridiagonal matrix of dimension n×n, whose superdiagonal is set to α 

and whose subdiagonal is set to β. This equation can be usefully

rewritten as (18):

(18) d = (I - Wn)
-1
u

Where I is the identity matrix. The implementation of the model used

in this paper is based on equation (18). This closed-form solution was

chosen over the iterative approach for several reasons: it allows us to

do without the threshold parameter δ, it is computationally more

efficient than the iterative method and it yields an exact solution rather

than an approximation (whose precision depends on the value of δ).

If we regard a DCN as a model of phonological acquisition, it is of

course necessary to circumscribe the search space, which is determined

by the parameters α and β. Since they are continuous numerical values,

they could take on a theoretically infinite number of values. Prince

(1993: 49-53) formally proved that any DCN which satisfies the

condition |αβ| ≤ ¼ converged, regardless of its size. In other words, for
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any such DCN, an exact solution to the learning problem is guaranteed

to exist. While this still means that there exists an infinite number of

possible converging values (Larson 1993: 36), in practice, the search

space for α and β is restricted to the interval [-0.5 0.5] and it is

assumed that the learning problem amounts to finding an optimal value

for each of the parameters within this interval.

For each simulation, the initial values of α and β were assigned

randomly from a uniform distribution within the interval [-0.3 0.3].

In order to train the model, I used an algorithm (originally developed

by Goldsmith and Larson) inspired by a learning procedure known as

“simulated annealing”. This supervised learning algorithm relies of a

parameter τ called “temperature”, which is initially very high (τ = 1.0).

Each time a new form is presented to the learner, the temperature

decreases according to a cooling schedule (Δτ), whether or not the

network successfully predicts the correct form. For example, if Δτ =

0.99, the temperature decreases by 1% after each iteration. When the

system fails to predict the correct form, the parameters α and β are

randomly modified by a factor drawn from a normal distribution with

mean 0 and variance τ (the temperature of the system), normalized by

a constant κ. The temperature of the system is also increased by the

Euclidean distance of the change in α and β; intuitively, this means that

big changes in α and β will increase the temperature more than small

ones. Finally, the inherent sonority of the segments whose derived

sonority was wrongly predicted is modified, by a factor which depends

on the temperature of the system and a normalization constant λ. When

the temperature becomes lower that a predefined threshold (θ), the

system is said to be frozen in a stable state and no further learning

takes place.

It must be emphasized that all these parameters (except α and β) are

those of the learning algorithm, not of the DCN. Such parameters are

often called “hyper-parameters” in the machine learning literature. For

the sake of clarity, the 5 hyper-parameters of the learning algorithm are

summarized below:

τ: the temperature of the model (initially set to 1.0 in all the

simulations)
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Δτ: the cooling schedule

θ: the freezing threshold

κ: the parameters which controls the magnitude of the change for α 

and β in case of error

λ: the parameters which controls the magnitude of the change for

the inherent sonority of a unit in case of error
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